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PGSSDX i~kmm XEXDS FOR ENERGY ABSORPTION I N  

SPACE-VEHICLE LANDINGS 

By Robert W. Warner* and Donald R .  Marble* 

SUMMARY 

I n  the design of systems t o  absorb the landing impact energy of space 

vehicles, such as the system which w i l l  be used t o  protect the Lunar Excur- 

sion Module of the Apollo spacecraft i n  touching down on the  moon, the 

specif ic  energy absorption (energy absorbed divided by the weight of the 

material  deformed) i s  not necessarily the Grima.ry factnr.  

which must be considered include the compatibility of the deforming struc- 

%her faztars  

ture with i t s  support, the  packaging volurne of the  system, the control of 

penetration in to  the  landing surface, and the des i rab i l i ty  of the system 

with respect t o  tip-over s t a b i l i t y  and maximum permissible acceleration. 

These factors  can lead t o  consideration of systems which do not employ energy 

absorbers of maximum efficiency. Materials improvements leading t o  b e t t e r  

energy absorption i n  these systems could r e su l t  i n  s ignif icant  gains, par- 

t i c u l a r l y  for  the systems having relat ively inef f ic ien t  absorbers. 

t ion ,  it i s  recommended that materials be improved by decreasing t h e i r  

In  addi- 

e l a s t i c  bounce-back and increasing the i r  resistance t o  the e f f ec t s  of the  

rocket exhaust and the space environment. Such materials improvements may 

play a major ro le  i n  the selection of energy absorbing systems. 

~~ ~~ ~~ 

*Research Scient is t ,  Vehicle Environment Division, NASA, Ames Research 

Center, Moffett Field, California 



INTRODUCTION 

It i s  generally accepted tha t  an energy-absorbing system w i l l  be .. 
employed f o r  so-called 

a system would manifestly be required for  parachute landings on planets.  

For the  lunar landing, it would be desirable t o  design the  system t o  absorb 

higher energies than commonly expected because of unforeseen problems that 

may OCCUT when the vehicle i s  hovering near the landing surface. For exam- 

ple, the possible disfiguration of the lunar surface by the rocket exhaust, 

together with any resul t ing damage t o  the  vehicle by dislodged lunar par t i -  

landings on the moon (refs. 1 and 2) ,  and such 

a 

cles,  ccidd cc3ceiT.r&ly reqijire p - e m t i x e  shijtdc?..v- nf the r g c k ~ t  e ~ ~ i n p  

I n  addition, there  i s  always the possibi l i ty  of engine f a i lu re  while hovering. 

Important differences exist between energy absorption for  space vehicles 

and conventional a i r c ra f t .  

of the  space environment suggest tha t ,  i n  order t o  be re l iab le ,  the energy 

absorbing system should be simple. 

never be used more than once, a controlled f a i lu re  of the mechanism can be 

employed, and a fa i lure  mechanism i s  inherently simpler than a mechanism 

p e m i t t  ing repeated use. 

The large temperature gradients and hard vacuum 

Because many space-landing systems need 

Considerable e f fo r t  has been devoted t o  systems fo r  absorbing the land- 

ing energy of spacecraft, as  indicated by the representative sampling i n  

references 3 - 18. The systems described i n  references 3 - 18 generally 

have three or more legs, but a f e w  employ single gas bags. 

Another area of e f fo r t  pertains t o  the energy-absorbing mechanisms within 

the systems, and references 19 - 30 bear on t h i s  area (where r e f s .  23, 24, and 

28 are  regarded a s  dealing with mechanisms rather  than systems because they do 

not concern themselves with tip-over problems arising from unsyrmnetrical 
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landing conditions). 

mechanisms available and c l a s s i f i e s  them as follows: 

I n  reference 27, Esgar surveys the  many energy absorbing 

(1) Materials deformation (honeyconib, balsa,  p l a s t i c  foam, frangible 

tube, extrusion, w i r e  drawing) 

(2) G a s  compression ( a i r  bags) 

(3) 

(4) 

Rockets (which may f a i l  or have t o  be turned o f f ,  as indicated above) 

Fr ic t ion and mss acceleration (spike, frangible tube, broaching, 

e t c  .) 

I n  the present paper, at tention w i l l  be r e s t r i c t ed  t o  materials defor- 

mation mechanisms. 

observations on the importance of mechanism energy absorption i n  the selec- 

The f irst  two major sections of the paper both lead t o  

L- biuu -- of zieclxi~isiis f o r  over-aii systems. In the f i rs t  section, the mechanism 

selection i s  based on over-all energy absorption alone w h i l e ,  i n  the second 

section, it is  based on a balance between energy absorption and several impor- 

tant supplementary requirements. 

f romthe  first two sections are applied t o  yield a conclusion on the range of 

mechanisms for  which materials improvements are  needed; and some general com- 

ments are  mde, with specific examples, on the nature and possible e f fec t  of 

these needed improvements. 

In the  t h i r d  major division, the  observations 

C 

D 
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NOTATION 

spacing parameter of reversible tube, dimensionless 

inside diameter of reversible tube, i n .  

acceleration of gravity on ear th ,  32.2 f t  per see2 

ultimate strength i n  s h m ,  l b  per in .2  

crushing load on reversing tube, honeycod core, and over-all s t r u t  

buckling load of over-all s t ru t  

c e l l  s ize  of honeyconib from f la t  t o  f l a t ,  in .  
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specific energy absorption, defined as  energy absorbed i n  foot- 

pounds divided by the weight of material  deformed i n  pounds 

thickness of honeycomb material, or reversible tLibe wall, in .  

energy absorbed by reversing tube 

ve r t i ca l  impact velocity, ft per sec 

stroke of energy absorber, in.  

ground slope, deg 

density of a material, lb per 

effect ive yield stress, l b  per in.2 

ENERGY ABSORPTION 

I n  order t o  show how mechanism energy absorption a f f ec t s  the selection 

of mechanisms for optinnun over-all energy absorption, the first step herein 

w i l l  be t o  describe two mechanisms and r a t e  them according t o  t h e i r  

(see Notation). 

i n i t i a l  design estimates and rate the r e su l t s  according t o  calculated values 

of over-all  efficiency, w h i c h  i s  energy absorbed divided by the weight of the  

complete mechanism plus i t s  supporting structure.  

compare the  rat ings according t o  

the significance of the  comparison. 

SEA 

"he second step w i l l  be t o  incorporate the mechanisms in to  

The t h i r d  s tep w i l l  be t o  

SEA. and over-all  efficiency and evaluate 

Energy- Ab sorbing Mechanisms 

A s  a start  on the first of the  three steps l i s t e d  above, a description 

i s  given of an inverting tube mechanism ( r e f .  26).  

sof t  aluminum a l loy  or mild s t e e l  and absorbs energy as it inverts  or "turns 

inside aut." An analyt ical  prediction of the inverting load has been 

This mechanism employs 

4 



0 

undertaken a t  the Ames Research Center, with r e su l t s  shown i n  Fig. 1. 

die ,  shown dotted, transmits the constant load, P, and inverts  the tube 

through a distance x. 

thickness, t ,  and the spacing during inversion i s  c t .  A s  indicated i n  

Fig. 1, energy i s  absorbed by p las t ic  bending, compression, and shearing, 

plus f r i c t ion .  Elas t ic  effects  a re  negligible. For the actual  analysis, 

shearing and f r i c t i o n  are  a l so  neglected, giving a t o t a l  energy, U, composed 

of bending and compression. After U i s  evaluated, it leads t o  the expres- 

sion a t  the bottom of Fig. 1 for the load, P, divided by the effect ive yield 

s t r e s s ,  4.. 

The 

The tube has an inside diameter, D, and a w a l l  

In  Fig. 2, the resu l t s  of Fig. 1 are expressed i n  terms of SEA/%. 

Also shown i n  Fig. 2 are the calculation of the spacing, c ,  for minimum 

energy and, a t  the bottom of the f igu re ,  the  corresponding value of 

For the  determination of 

i s  used ( re f .  31), and this cr i ter ion i s  given i n  Fig. 2, where 

shear ultimate. 

SEA/%. 

oy, a greatly simplified von Mises y ie ld  c r i t e r ion  

K i s  the 

R e s u l t s  a re  shown i n  Fig. 3 for a 3003-Hl4 aluminum tube, which has a 

K value of 14,000 l b  per sq in .  (ref.  32).  The upper sol id  l i n e  i s  a p lo t  

versus t / D  of the reversing tube SEA i n  f t - l b  per l b ,  a s  minimized with 

respect t o  spacing. 

taken from reference 26 and adapted t o  the present terminology. 

with the reversing tube theory is  seen t o  be good. 

The lower sol id  l i ne  and the 

The dashed l i n e  i s  a fa i r ing  of experimental points 

Agreemnt 

t / s  notation i n  Fig. 3 apply t o  hex- 

agonal honeycoxib, which i s  the second energy absorbing mechanism t o  be 

described. Here s i s  the c e l l  size from f l a t  t o  f l a t ,  and t i s  the 

thickness of the material (giving w a l l  thicknesses of t on four sides of 
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a c e l l  and 2t on two s ides) .  

axes, a theory has been devised i n  reference 29 and found t o  compare favor- 

ably with experiment. In Fig. 3, the r e su l t s  of reference 29 have been 

converted t o  SEA values for 3003-H18 aluminum al loy.  This conversion 

includes the effect  of stroke l imitation due t o  compacting, as estimated 

from information i n  references 25 and 29. 

For a crushing stroke pa ra l l e l  t o  the c e l l  

It should be noted that the m i m u m  SEA values i n  Fig. 3 correspond t o  

p rac t i ca l  upper limits i n  t / D  or t / s ,  above which the par t icular  mchanisms 

and materials fa i l  t o  function. On t h i s  basis ,  it can be seen that the pres- 

ent honeyconib core has a lower maximum than the present reversing t d e .  

Such w i l l  not be the case i n  general since the reversing tube i s  r e s t r i c t ed  t o  

a sof te r  metal than is  the honeycomb core. The SEA ra t ing  in Fig.  3, how- 

ever, w i l l  consti tute a useful CoIIlEparison after the two mechanisms and materials 

which result i n  the ratings have been incorporated in to  i n i t i a l  design estimates. 

SEA 

Application of Energy Absorbing Mechanisms 

I n  the proposed design estimates, the two mechanisms of Fig. 3 are uti- 

l i zed  i n  a l ternat ive energy absorbing s t r u t s ,  of ident ica l  length, for  a 

hypothetical lunas landing vehicle. 

vehicle are  shown i n  Fig. 4, nax~ly,  an ear th  weight of 20,000 l b  and a max- 

irmrm acceleration of 6 ear th  g essent ia l ly  i n  the direction of the four main 

energy absorbing s t ru t s .  I f  a l l  four pads impact simultaneously, these num- 

bers  r e su l t  i n  a 30,000 l b  maximum crushing load i n  each s t r u t .  

The general landing conditions of t h i s  

The geometry of a single s t ru t  i s  shown i n  Fig. 5 with i t s  supporting 

structure and foot pad. 

clearance i s  6 f t ,  and a 4-ft stroke i s  selected.  

a maximum load of 30,000 l b  per s t ru t ,  handle symmetric ve r t i ca l  landings 

The s t r u t  length i s  9 f t ,  pr ior  t o  crushing, the  

This stroke should, for  
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with impact veloci t ies  up t o  30 or 3’3 f t  per see, depending on the extent 

t o  which the force-displacement curve deviates f r o m  a rectangular shape. 

The two energy absorbing mechanisms described e a r l i e r ,  then, are  incor- 

porated in to  i n i t i a l  design estimates fo r  a single s t r u t  having an undeformed 

length of 9 f t  and carrying a constant 30,000 l b  crushing load over a 4-ft 

stroke. 

because the mxha.nisms are not tapered. Another ground rule requires the 

buckling load t o  be a t  l ea s t  90,000 l b ,  or i n  other words, a t  l e a s t  three 

times the crushing load, and t h i s  factor i s  assumed t o  account for  dynamic 

onset problems. Finally, the reversing tube mechanism i s  designed t o  pro- 

vide i t s  own resistance t o  column buckling while the honeycomb core i s  sup- 

ported by t m i n g  made of 6061-r6 aluminum. 

The load i s  constant, giving a rectangular force-displacement curve, 

It i s  considered that the  ground rules  j u s t  described are  sat isfactory 

for present canparison purposes, and specifications of t h i s  nature must be 

made t o  permit the determination of minimum s t r u t  weights. 

weights are determined by means of the  curves i n  Fig. 6, which are  p lo ts  of 

various comgonent weights i n  pounds versus 

t / s  for the  honeyconib core. 

These minimum 

t / D  fo r  the reversing tube or 

The reversing tube w e i g h t  i s  defined by the upper sol id  l i n e  i n  Fig. 6. 

The intersect ing ve r t i ca l  dashed l ine  defines the buckling boundary fo r  the 

reversing tube. To the l e f t  of the ve r t i ca l  l i ne ,  the buckling c r i te r ion  

i s  sa t i s f i ed  since PB/P > 3, where P i s  the crushing load fo r  the present 

strut (3O,OOO l b )  and PB i s  the buckling load. To the r igh t  of the ve r t i ca l  

l i ne ,  the buckling c r i te r ion  i s  not s a t i s f i ed  since 

sol id  l i n e  shows tha t  the reversing tube weight, which i s  a l so  the t o t a l  strut 

weight, decreases as t / D  increases, the minimum weight for  the s t r u t  l i e s  a t  

the  intersect ion of the tube-weight curve and the buckling boundary. 

PB/P < 3.  Since the upper 
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The t o t a l  weight for the honeycomb s t r u t  i s  defined by t,he l o w e r  s o l i d  

l i n e  i n  Fig. 6. 

ordinates for  the nearly horizontal dashed l i nes ,  which represent the indi- 

vidual weights of the honeyconib core and i t s  supporting tube. 

curve for  the supporting tube i s  defined by the buckling boundary, PB/P = 3. 

Hence, the minimum t o t a l  w e i g h t  f o r  the honeyconib s t r u t  i s  simply the mini- 

mum ordinate fo r  the  lawer sol id  l ine,  as  marked by an intersecting ve r t i ca l  

dash. 

The ordinate values for  t h i s  curve are  the sums of the 

The ent i re  

It can be seen i n  Fig. 6 that the minimum t o t a l  s t r u t  weight i s  greater 

for  t he  reversing tube than for  the honeycat& core. 

should be recalled t h a t  the  two systems are ident ica l  except fo r  t h e i r  struts 

and a re  required t o  absorb the same energy. Thus the strut-weight conparison 

In  t h i s  connection, it 

jus t  given means that the honeycomb system has a higher over-all  efficiency 

than the  reversing tube system. 

Comparison of Ratings 

It i s  useful, a t  t h i s  point, t o  compare the SI% rat ings given e a r l i e r  

The somewhat with the over-all efficiency ratings just derived from Fig. 6. 

surprising r e su l t  i s  that the mechanism producing the higher over-all e f f i -  

ciency, namely, the honeycomb core, has the lower value fo r  i t s  maximum SEA. 

A s  a start toward an explanation of t h i s  reversal  of SFA ratings, it 

i s  noted that two factors  other than SE4 have a large e f fec t  on over-all 

efficiency i n  the present example. The f i rs t  factor  i s  the addition of 

l oca l  structure necessary t o  contain or support a mechanism. 

shown i n  Fig. 6 a t  the optimum t / s  

porting tube weighs well  over twice as  much as  the  honeycomb core. 

I t s  e f fec t  i s  

for  the honeycomb s t r u t ,  where the sup- 

The 
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second factor i s  the  application of a mechanism below i t s  maximum SEA 

value. In the present case, the optimum SEA. values employed are  a s  much 

as 42 percent lower than the corresponding maximums i n  Fig. 3. 

of such a reduction can be seen i n  Fig. 6 i n  t ha t  the optimum values of 

t / D  and t /s ,  which determine the optimum values of 

t o  minimum w e i g h t s  for the  reversing tube and honeyconib core mechanisms. 

It has already been noted tha t  the  optimum t / D  and t / s  

mined by the  buckling boundary of 

fac tor  i s  associated with buckling i n  the present exanrple. 

The cause 

SEA, do not correspond 

values are deter- 

pB/P = 3, and t h i s  means that the second 

With two factors  established which could conceivably reverse the  

rst.inzs i n  the yresent. d.esFgn cmqErison, E qljestic?~ r e ~ i n :  E: to vhy the.; 

do so. The f-undarnental answer i s  that the specified over-all design geome- 

t r y  c a l l s  fo r  a rather  long energy absorbing strut; and t h i s  length i s  an 

overwhelming disadvantage with respect t o  buckling for  the mechanism having 

the higher mimum SEA, namely, the reversing tube. 

advantage occurs because the reversing tube supplies i t s  own supporting 

s t ructure  and must be made of sof t  material, whereas the honeycomb core can 

be enclosed by hard tubing. 

e a r l i e r ,  the  first factor i s  misleading i n  that the supplying of i t s  own 

support by the reversing t&e should apparently save weight, but actual ly  

costs weight because of the buckling e f fec t  associated with the second factor .  

SEA 

T h i s  buckling dis- 

With respect, then, t o  the two factors  l i s t e d  

A t  t h i s  point, a question naturally a r i s e s  a s  t o  whether a reversal  of 

SEA ra t ings i s  l i k e l y t o  occur i n  design comparisons other than the present 

example. The likelihood seems f a i r l y  great as long as  the two fac tors  which 

can reverse the ratings have broad appl icabi l i ty  and as  long as the over-all 

design geometry can represent a major advantage fo r  one of the mechanisms 

being compared. The broad appl icabi l i ty  of the first factor ,  namely, addition 
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of supporting structure,  i s  self-evident, with examples being dies fo r  

frangible tubes, bases for  crushing p l a s t i c  or metallic foam, and clamps for  

duct i le  w i r e s ,  together with tubes for  enclosing crushable cores as consid- 

ered herein. A s  fo r  the second factor,  it i s  hard t o  imagine a design which 

does not c a l l  for  a compromise between the efficiency of the mechanism and 

the  efficiency of i t s  supporting structure. Finally, the choice of over-all 

design geometry w i l l  often be v i r tua l ly  specified by a variety of require- 

ments, ranging from the absorption of prescribed energy t o  the use of exis t -  

ing hardware; and many of the energy absorbing mechanisms available are suf- 

f i c i en t ly  in t r i ca t e  t o  be sharply advantaged or disadvantaged by specified 

geometry. 

The foregoing discussion leads t o  the expectation that the present 

reversal  of SEA ra t ings i s  not an isolated example, and such a conclusion 

manifestly diminishes the importance of the SEA i n  the selection of mech- 

anisms for  optimum efficiency of energy absorption i n  over-all  systems. 

INCORPORATION OF S C P P m A R Y  REQUlflEMENTS 

Up t o  t h i s  point,  a high over-all efficiency of energy absorption has 

been the only requirement considered i n  evaluating the importance of the 

SEA. 

i n  f a c t ,  the requirement of satisfactory tip-over s t a b i l i t y  i s  important 

enough t o  ju s t i fy  a major decrease i n  over-all efficiency. A re la t ive ly  

small additional decrease m y  be jus t i f ied  by supplementary requirements other 

than s t ab i l i t y .  The last statement implies the premise, of course, that a 

system can be developed which i s  stable i n  tip-over but incorporates several 

other requirements while retaining a reasonably high over-all  efficiency with 

respect t o  stable systems developed previously. The substantiation of t h i s  

Several supplementary requirements must a lso be considered, however, and, 
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premise and the consideration of i t s  e f fec t  on the importance of the  

comprise the major objectives i n  the present section of the paper. 

SEA 

The proposed substantiation i s  res t r ic ted  t o  the lunar landing, and 

the  f irst  step i s  t o  describe the supplementary requirements considered herein 

and the  model landing system developed t o  meet those requirements. The sec- 

ond s tep i s  t o  present experimental r e su l t s  for  the model system and t o  dis- 

cuss the  extent t o  which those resu l t s  actual ly  substantiate the  premise i n  

que st ion. 

Supplementary Requirements and Model Landing System 

With respect, then, t o  the f irst  s tep given above,the supplementary require- 

ments t o  be considered are  the following: The landing system m u s t  

Provide minimum original  packaging volume, 

Reduce the  poss ib i l i ty  of excessive penetration of a potent ia l ly  

low-strength lunar crust ,  

Provide a stable firing platform for  return blast-off ,  

Prevent the  vehicle from tipping over as a r e su l t  of unsymmetrical 

landing conditions, and 

Provide an e f f ic ien t  shape for  the boundary between acceptable and 

unacceptable impacts, as defined by tip-over and the maximum 

permissible acceleration. 

Requiremnts (1) and (2) have led  t o  the choice of p l a s t i c  foam t o  

absorb most of tbe prescribed impact energy. With respect t o  requirement (l), 

experience on ear th  suggests that foam should be foamable i n  f l i g h t  a f t e r  

ear th  ex i t .  This would resu l t  i n  a very low volume of material  i n  the energy 

absorbing system during ear th  e x i t .  An e f f i c i en t  dis t r ibut ion of t h i s  small 

volume would then require a minimum of fa i r ing  material  for  smooth, buffet- 

f ree  air  flow, with a resultant saving i n  weight. 

11 



Requirement (2)  derives from the controversy over the depth of f a i ry  

cas t l e s  or other low-strength lunar crust  (as  i n  r e f s .  33 - 47, where 

r e f s .  39, 42, 43, and 47 contain the principal advocacy of f a i ry  cas t les ) .  

Since future unmanned probes may leave the controversy unresolved, it would 

seem necessary t o  accommodate requirement (2) a s  f a r  a s  possible within 

weight l imitations.  Foam does t h i s  excellently because it permits a long 

stroke and a large bearing area without causing a major weight penalty or 

excessive packaging problem. Both a long stroke and a large bearing area 

tend t o  reduce the  chance of penetrating the lunar crust  t o  such a depth as  

t o  hamper exploration of the surface or return blast-off .  

The t h i r d  requirenaent has led to the choice nf z three-legged kiidl;.,- 

system, with the r e su l t  t ha t  no mechanical cranking of the legs  i s  required 

t o  provide blast-off s t a b i l i t y  a f t e r  landing. 

specified i n  the fourth requirement r e fe r s  t o  the moment of impact and c a l l s  

fo r  a landing system having wide outreach and low bounce-back. Finally, the 

boundary between acceptable and unacceptable impacts i n  the f i f t h  require- 

ment tends t o  be inef f ic ien t ,  t ha t  i s ,  too r e s t r i c t ive  a t  cer ta in  impact 

veloci t ies  and uselessly unrestrictive a t  others; and the force-displacement 

curve of the system should be adjusted t o  avoid such inefficiency. 

The model energy absorbing system developed t o  meet the above require- 

The prevention of tip-over 

ments i s  sham i n  Fig. 7. This i s  the f ina l  version evolved from a long 

ser ies  of t e s t s  and studies and i s  shown undeformed. 

cu t t e r s  r e s t  on three hollowed-out pieces of polystyrene foam, having a density 

of 1.8 l b  per cu ft, and the cutting of the foam absorbs the largest  par t  of 

the impact energy. 

reduce bounce-back and thereby improve tip-over s t ab i l i t y .  The c l ip s  shown 

on the cu t te rs  i n  Fig. 7 act  l i ke  "fish-hook-type" barbs, once the foam has 

Three "ski-pole-type" 

Cutting i s  employed instead of crushing i n  order t o  
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been cut,  and thus reduce bounce-back s t i l l  fxr ther .  Also s h m  i n  Fig. 7 

Ere the  h,orizc?ntal tecsion mzibers, the cii-ved coni-ression members (which 

buckle t o  absorb energy af ter  the foam has been cu t ) ,  the crimps a t  the top 

of the  compression members ( t o  simulate pinned jo in t s  fo r  folding the system), 

t he  horizontally and ver t ica l ly  oriented acceleromters,  and a 5-in. scale.  

A picture of a complete model after impact i s  shown i n  Fig. 8, together 

with a portion of the f r ee - f a l l  tes t ing f a c i l i t y .  The landing surface on 

which the model r e s t s  i s  a 1-1/2-in. thick layer of crushed basa l t .  

be seen tha t  the model compression members have been buckled by the load 

bui l t  up near the end of the foam cutting stroke. The weight of the model body, 

including the f i n s  which provide s t ab i l i t y  during the ve r t i ca l  drops, i s  

33 lb;  and the weight of the energy absorbing system, including everything 

below the thrus t  ring, i s  1-2/3 lb ,  or very close t o  5 per cent of the model 

body weight. The t o t a l  model weight, divided by the combined bearing area 

of the three foam pads, i s  0.3 l b  per sq in .  

It can 

The model body, with i t s  f ins ,  cannot be regarded as a scaled model 

of any prototype vehicle. A t  a scaling of roughly 10 t o  1, however, it can 

be considered as crudely representative of the Lunar Excursion Module, or 

IZN, c lass  (see appendix A fo r  scaling).  

Drop-Test R e s u l t s  and Discussion 

I n  Fig. 9 ,  a limited se t  of drop-test r e su l t s  i s  presented fo r  the 

model jus t  described. The sol id  l ine i s  the beginning of an envelope extend- 

ing f romthe  CL axis  t o  the V axis, where a i s  the landing surface slope 

i n  degrees and V, the  ve r t i ca l  impact velocity i n  fee t  per second. The 

envelope defines the boundary between acceptable and unacceptable impacts 

referred t o  ea r l i e r .  Within the envelope, the model does not t i p  over, and 



t he  ve r t i ca l  acceleration does not exceed 50 g (which scales t o  3 g for  a 

prototype w i t b  10 t o  1 scaling and 6 g w i t h  6 t o  1 scaling, a s  shown i n  

Eq (A6) of appendix A ) .  ALL t h e  data are fo r  a model oriented with one leg 

uph i l l  and are expressed i n  terms of  symbols as described i n  Fig. 9. 
0 Now, the  end point on the  a axis ,  a t  a = 8-1/2 , i s  the s t a b i l i t y  

point when the  model i s  released with only the uph i l l  foam touching the 

ground. The end point on the V axis, which has not been determined, w i l l  

be the  point at which the system goes above 50 g on a horizontal surface. 

Because of inaccuracies i n  the accelerometer measuring system, the highest 

velocity for  which the acceleration i s  known not t o  exceed 50 g i s  32 f t  

per sec, the maximum velocity for  which successful drops a re  shown i n  Fig. 9. 

It i s  a l so  known, however, that the system did go over the g l i m i t  on a 

horizontal  surface at  a ve r t i ca l  impact velocity of 44 f t  per sec. 

end point on the 

Thus the 

V axis m u s t  l i e  between 32 and 44 f't per sec. 

When these veloci t ies  are squared and divided by a denominator consist- 

ing of 2 g t-s the  r a t i o  of the system weight t o  the vehicle weight, the 

results define limits for  the over-all efficiency of energy absorption. 

Hence the lower velocity of 32 ft per sec, together w i t h  the weight r a t i o  

given e a r l i e r  as 0.05, gives a conservative estimate of the present e f f i -  

ciency, namely, 320 f t - l b  per lb. 

A question remains, however, as t o  whether such an efficiency i s  

reasonably high. I n  t h i s  regard, only the  most qual i ta t ive statements can 

be made since no consistent standard has been established for  the comparison 

of eff ic iencies .  A s  a start, then, on a qual i ta t ive comparison, it i s  noted 

that a t  least one of the competitive systems referenced e a r l i e r ,  and having 

sat isfactory tip-over s t ab i l i t y ,  has a lower weight r a t i o  than the present 

value of 0.05, specifically,  0.025 (ref. 12) .  I n  addition, the present value 
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would have t o  be increased somewhat i f  the proof t e s t s  were extended t o  

include the effects  of horizontal velocity and nonverticai a t t i tude  a t  

impact, but were le f t  unchanged i n  other respects. 

course, a weight disadvantage for  the present system. 

seems roughly balanced, however, by the fac t  t h a t  32 ft per sec i s  larger  

by a factor  of three than the maxirmun resul tant  impact velocity usually 

considered i n  designing complete systems (refs. 12 and 48). 

gins of safety i n  the competitive designs, t h i s  velocity factor  should 

remain large enough, par t icular ly  when squared, t o  provide a major advan- 

tage i n  t o t a l  energy. On balance, then, it seems l ike ly  tha t  the present 

system has a reasonably high over-all efficiency. 

This consti tutes,  of 

Such a disadvantage 

Despite m a r -  

The remaining issues t o  be considered, for  the substantiation of the  

premise i n  question, involve the sat isfact ion of the supplementary requirements. 

With respect t o  the requirement of an e f f i c i en t  shape for  the envelope i n  

the  V-a plane, the  desired envelope i s  shown i n  Fig. 9 a s  the larger  of 

the  two dashed rectangles. 

the  end points j u s t  described, i s  e f f ic ien t  i n  the sense of being equally 

r e s t r i c t i v e  a t  every impact velocity and ground slope. 

as represented by the solid l i n e ,  is  seen t o  follow the ve r t i ca l  l eg  of the 

desired envelope with deviations which are  small enough t o  r e t a in  an e f f i -  

c ien t  shape, as required. 

Such a rectangle, with side lengths based on 

The actual  envelope, 

It i s  a l so  noteworthy i n  Fig. 9 that the deviations of the actual  

envelope permit a rectangular placard, or permissible landing envelope, with 

end points a t  V = 28 ft per sec and c, = 5 . This placard indicates t ha t  

the  supplementary requirement of preventing vehicle tip-over has been m e t ,  i n  a 

qual i ta t ive sense, since a 5' slope i s  a comon lunar modde design specifi-  

cation (refs .  12 and 48), a lbe i t  currently outdated. 

0 



The three remaining supplementary requirexents, which are related t o  

packaging, peiietrsttlon of the lunar c r u s t ,  and a stable f i r i n g  piatform for 

re turn  blast-off ,  have been m e t  i n  varying measure by the selection of plas- 

t i c  foam and a three-legged system, as  pointed out ea r l i e r .  

the  generally quali tative substantiation of the premise tha t  an over-all  

energy absorbing system can be developed which readi ly  incorporates the present 

supplementary requirements while retaining reasonably e f f ic ien t  energy 

absorption with respect t o  stable systems developed previously. 

This completes 

Several of the supplementary requirements referred t o  i n  the resu l t  j u s t  

s ta ted  have been sa t i s f i ed  because of the foam-cutting mechanism. 

nately, t h i s  mechanism has a very low Sl3A value, specif ical ly ,  688 f t - l b  

per lb. 

low SEA for  two reasons. F i r s t ,  the foam mechanism i s  well suited t o  the 

specified over-all design geometry, and it w a s  indicated i n  the f irst  major 

section of the paper that i n  such cases a re la t ive ly  ineff ic ient  mechanism 

can result i n  surprisingly good over-all efficiency. The second reason i s  

the use of a deforming support structure,  which improves efficiency par t ly  

by increasing the energy absorption but mostly by decreasing the over-all 

weight , 

Unfortu- 

A reasonably high over-all efficiency has been achieved despite the  

Since these two reasons are  expected t o  be important and re la t ive ly  

unavoidable factors  i n  many designs, the present r e su l t  should be applicable 

t o  a variety of configurations and a var ie ty  of supplementary requirements. This 

means tha t  i n  the selection of a mechanism fo r  any specific landing problem, 

a trade-off between a high SEA and those properties which tend t o  meet impor- 

t a n t  supplementary requirements need not always r e su l t  i n  prohibitive losses,  

or even any losses,  i n  over-all efficiency. Hence a trade-off of t h i s  nature 

may w e l l  be feasible  with respect t o  e f f i c i en t  energy absorption as  well  as 
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desirable with respect t o  the supplementary requirenients, and such a conclusion 

,nanifestly dmi i i shes  tne significance of the SEA i n  the selection 

mechanisms. 

The preceding two major sections of the paper have both l ed  t o  obser- 

vations tending t o  downgrade the  St% parameter with respect t o  i t s  impor- 

tance i n  mechanism selection. It fol lows,  then, t ha t  any program fo r  materials 

improvement must include mechanisms having a w i d e  range of 

Because of this range, any comments on a materials program must necessarily 

be general, and specific materials must be considered only as  exaaples. 

present section is  devoted t o  such c o m n t s  and examples. It starts w i t h  a 

general discussion of the nature of needed materials improvements, and ends 

with a b r i e f  consideration of the possible e f fec t  of those improvemnts. 

SEA. values. 

The 

Nature of Needed Materials Improvements 

One of the improvements recommended i s  a general increase i n  mechanism 

values across the broad range referred t o  above. SEA 

ing of  the importance of the 

The e a r l i e r  dawngrad- 

SEA i n  the selection of mechanisms does not, 

-- per se ,  diminish i t s  importance i n  the improvernent of a given mechanism. 

When a given mechanism, having a fixed weight r a t i o  of deforming t o  nonde- 

forming material, i s  incorporated i n  a par t icular  system t o  absorb a speci- 

f i e d  energy, an increase i n  the 

weight. 

more e f f i c i en t  system, barring the unlikely poss ib i l i ty  t ha t  the  decrease 

i s  accompanied by changes i n  the mechanism size which require a heavier sup- 

porting structure.  

SEA value always lowers the mechanism 

In  turn,  t h i s  decrease i n  the mechanism weight always r e su l t s  i n  a 

Thus it i s  generally desirable t o  increase the SEA 



value of any given mechanism u n t i l  the  mechanism weight becomes an 

esseEtiall;. -;aniship4 p a t  of the t&al system weight. 

The SEA l i m i t  jus t  stated,  where the mechanism weight becomes t r i v -  

For ial ,  has interest ing implications when it i s  i l l u s t r a t ed  numerically. 

example, i f  acceptable over-all eff ic iencies  fo r  manned landing systems range 

very roughly from 200 t o  450 f t - l b  per l b ,  and i f  a l l  mechanism material i s  

deformed, then an increase i n  SEA from, say 30,000 f t - l b  per l b  t o  in f in i ty ,  

would net a t  most a 1-1/2 per cent decrease i n  t o t a l  sys+,em weight. 

means, i n  view of the f a c t  that the t o t a l  system weight i s  only 2-1/2 t o  

5 per cent of the landing weight, that  there i s  re la t ive ly  l i t t l e  advantage 

i n  raising SEA values above 30,000 f t - l b  per lb; and t h i s  value has already 

been at ta ined for  some mechanisms (refs. 15 and 27). 

considered together with the f ac t  that the mechanism having the highest 

i s  not necessarily the  best  choice, the  cmbination strongly indicates t ha t  

the  range of mechanisms for  which the SEA can most prof i tably be increased 

does not include the  most e f f ic ien t  mechanisms currently available. 

should be emphasized tha t  the conclusion ju s t  s ta ted applies primarily t o  

manned landing vehicles. 

This 

When these nunibers a re  

SEA 

It 

By def ini t ion,  the SEA value of a mechanism can be increased by 

increasing the r a t i o  for  which the numerator i s  the  stroke times the  average 

force and the denominator is  the weight of the deforming material. By anal- 

ogy, it seem l ike ly  that the SEX value of a mechanism can be increased by 

changing i ts  material so as t o  increase the r a t i o  for which the numerator i s  

the  maximum permissible s t r a i n  times the  effect ive s t r e s s  during deformation 

and the  denominator i s  the material density. 

Examples of this material r a t i o  a r e  provided by the reversing tube and 

honeycolrib core mechanisms considered earlier, and for these mechanisms the 
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effect ive s t r e s s  during deformation i s  simply the effective yield s t r e s s .  

The formula given ea r l i e r  for the reversing tube SEA shows the effect ive 

y ie ld  s t r e s s  and the material density t o  enter expl ic i t ly  according t o  the 

material  r a t i o  under consideration (see Fig. l), and t h i s  i s  also the  case f o r  

the honeycomb core. 

implici t ly  i n  the  sense that an increase i n  duc t i l i t y  permits the  mechanisms 

t o  function a t  larger mximum values of t / D  or t /s ,  and the curves pre- 

sented ea r l i e r  indicate that these larger  maximums re su l t  i n  an 

For both mechanisms, the maximum permissible s t r a in  enters  

SEA increase. 

For more complicated mechanisms, such as foam cutting or a frangible 

tube, the s t r a in  and stress i n  the present material r a t i o  would probably 

s?_ave to he ~ + r - k f f ' f c ~ ~ l - -  No rhange woi-13.d. he reqiufred? however, i n  the defi- 

n i t ion  of material  density, and it should continue t o  enter the SEA formula 

expl ic i t ly .  

I n  addition t o  increasing SEA, it would be desirable t o  decrease elas- 

t i c  bounce-back fo r  a var ie ty  of mechanisms. 

s t a b i l i t y  and thus permit l e s s  outreach and a l i gh te r  over-all  system. 

some cases it may be prof2table t o  decrease bounce-back u n t i l  the  mechanism 

accounts for  no more than, say, 10  per cent of the bounce-back stroke of the 

en t i r e  landing vehicle. 

This would improve tip-over 

In 

By way of i l l u s t r a t ion ,  it would seem tha t  a p l a s t i c  foam could be made 

t o  be b r i t t l e  and thus have l e s s  bounce-back than the material used i n  the 

present study - if  t h i s  has not already been done. Specifically,  i f  the 

model discussed e a r l i e r  had not required cut t ing of the foam t o  reduce bounce- 

back and prevent tip-over, then the foam could have been crushed a t  an 

three times greater t h a n  that of the cutt ing.  

SEA 

Finally, it would be useful t o  increase the resistance of energy absorb- 

ing mechanisms t o  the environment irrrposed by space and the  rocket exhaust, 



namely, heat, cold, vacuum, radiation, micrometeoroid bonibardment, and 

planetary atmospheres. 

such as covering the mechanism i n  an appropriate manner and lengthening the 

rocket motor u n t i l  the e ~ a u s t  misses the mechanism, w i t h  the long motor 

being used for  part of the impact energy absorption. 

tage,  however, not t o  have t o  rely on these p a r t i a l  f ixes ,  and the mech- 

Admittedly, cer ta in  p a r t i a l  f ixes  are available,  

It would be an advan- 

anisms should be improved accordingly. 

Possible Effect of Materials Irnprovemnts 

A t  t h i s  point, it i s  useful t o  consider the possible e f fec t  of the 

m o + n n i o l c  irrmvn-rmmnnfe x r h i n h  hn-rrn hnnn -nmnmmeniind Tn - r r i n . r . T  & thp 7~rcaG 
- " L A  -Lu*-LY -pa " " L - Y V Y  .,-*&-*A *-"b U b k L I  a b C " ~ A A U b U .  a* .A_.. 

SEA range over which mchanisms should be improved, the general e f fec t  

should be a large increase i n  the nuniber of highly desirable mechanisms. 

Specifically,  there should be a tendency t o  concentrate SEA improvement 

on mechanisms having re la t ive ly  law SEA' values since the most e f f i c i en t  

mechanisms have reached the point of diminishing returns for  manned landings. 

CONCLUDING 

Two specific examples, one analytical  and the other experimental, have 

been used t o  show tha t  the SEA i s  not necessarily the primary factor i n  

the  selection of energy absorbing mechanisms. Hence, it has been s ta ted 

t h a t  any program fo r  materials improsenient must include mechanisms having a 

wide range of SEA values. Across th i s  range, the recommended improvements 

have included a major increase i n  SEA, a major decrease i n  e l a s t i c  bounce- 

back, and an improved resistance t o  the  environment imposed by space and the 

rocket exhaust. For the case of manned landings, it has been pointed out 

that there i s  l i t t l e  advantage i n  improving the SEA of the most e f f i c i en t  * 
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mechanism; and thus the recommended materials improvements should tend 

t o  r a i se  the i m e r  SEA vaiues more than the higher values. 

It then follows as a corollary that such a selective improvement of 

values should permit increased consideration of landing requirements SEA 

other than energy absorption, as, for example, packaging, tip-over stabil- 

i t y ,  and prevention of excessive penetration of the  lunar crust .  

choice between over-all systems designed t o  incorporate such supplementary 

requirements may w e l l  depend on which mechanisms benefit  most from improved 

materials . 

The final 
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APPENDIX A 

SCALING 

The scaling used herein i s  derived from two conditions: (1) the model 

i s  scaled geometrically re la t ive  t o  the  prototype; and (2) the  model i s  made 

from the same material as the prototype, which requires ident ica l  stresses 

and ident ica l  material  densit ies.  From condition (l), with N taken as a 

fixed number, 

where 

the  subscripts p and m stand for prototype and m o d e l .  From the  ident ica l  

s t r e s s  aspect of condition ( 2 ) ,  

L, A, and v a re  length, area, and volume, respectively, and where 

where F i s  force. From the ident ical  mterial density aspect of 

condition (2) , 

where M i s  mass. 

An immdiate question arises as t o  whether the weight force W i s  

consistent with Eq (A2) .  For t h i s  force, with Eq ( A 3 ) ,  

where g i s  acceleration due t o  gravity. Hence, fo r  consistency w i t h  
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Eq (A2), it must follow t h a t  

. 
If the  prototype i s  t o  land on the moon and the m o d e l  i s  t o  be tes ted  on 

earth, Eq (A5) requires that N = 6 fo r  exact scaling of the weight force. 

Other quantit ies fo l low direct ly  from Eqs ( A l )  t o  (A3) i n  conjunction 

with specific l a w s  of nature. 

and (A3) yield 

With Newtons second l a w ,  fo r  example, Eqs (A2) 

where a is swelerz t ion .  E s h c u ~  be acted that ~ q s  ( ~ 5 )  E L E ~  ( ~ 6 )  ? x t h  

deal w i t h  accelerations and both have the sam form. This s imilar i ty  of form 

must be regaxded as a fortunate coincidence since the two equations serve dif-  

fe ren t  functions, with Eq (A6) scaling accelerations according t o  any rider 

N and Eq (A5) specifying N according t o  the physical accelerations due t o  

gravity.  

For scaling the dimensions of velocity V, the  formula for constant 

acceleration v2 = 2aS can be used, where S i s  distance over which constant 

acceleration takes place. 

eral  length, L, specialized as 

With Eqs ( A l )  and (A6), it i s  seen that ( w i t h  gen- 

s) 

For time scaling another formula f o r  constant acceleration, V = at, can be 

usea, where t i s  tim. Eqs (A6) and (A7) then give 
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Equations (All through (A8) have been checked by other physical l a w s  and 

re la t ions ,  including work-energy, impulse-momentum, torque-inertia,  and 

stress-bending moment. 

and relat ions have been found t o  have the sane scaling on both sides of 

t h e i r  equations. 

The resul ts  have been sat isfactory i n  that the laws 
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FIGURE LEGENDS 

Fig. 1.- Reversing of aluminum tube. 

Fig. 2.- Efficiency of reversed tube. 

Fig. 3.- Specific energy absorption. 

Fig. 4.- Hypothetical lunar lander configuration. 

Fig. 5.- Lunar s t r u t  configuration. 

Fig. 6.- Weight of s t ru t s .  

Fig. 7.- Energy absorbing system. 

Fig. 8.- Test f a c i l i t y  and model a f te r  impact. 

Fig. 9.- Results on energy absorption and tip-over s t ab i l i t y .  
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